专业原创精品说说!

当前位置:首页 > 合同范本 > 总结 > 本文内容

二次根式的加减公开课一等奖教案_《二次根式的加减》教案设计

发布时间:2025-03-19 18:41:16源自:http://www.yancollege.com作者:仰望免费范文阅读(0)

《二次根式的加减》教案设计

一、复习引入

学生活动:请同学们完成下列各题:

1.计算

(1)(2x+y)·zx(2)(2x2y+3xy2)÷xy

二、探索新知

如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?仍成立.

整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,当然也可以代表二次根式,所以,整式中的.运算规律也适用于二次根式.

例1.计算:

(1)(+)×(2)(4-3)÷2分析:刚才已经分析,二次根式仍然满足整式的运算规律,所以直接可用整式的运算规律.

解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.计算

(1)(+6)(3-)(2)(+)(-)

二次根式第二课时教案

分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.

解:(1)(+6)(3-)

=3-()2+18-6=13-3(2)(+)(-)=()2-()2

=10-7=3

三、巩固练习

课本P20练习1、2.

四、应用拓展

例3.已知=2-,其中a、b是实数,且a+b≠0,

优美古风句子摘抄

诗词知识

化简+,并求值.

分析:由于(+)(-)=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x的值,代入化简得结果即可?

欢迎分享转载→ 二次根式的加减公开课一等奖教案_《二次根式的加减》教案设计

用户评论

专题说说

栏目ID=28的表不存在(操作类型=1)更多…